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Abstract
Recently formulated integrable theory of quantum transport (Osipov and
Kanzieper, 2008 Phys.  Rev.  Lett.  101  176804) is extended to describe sample-
to-sample fluctuations of the noise power in chaotic cavities with broken
time-reversal symmetry. Concentrating on the universal transport regime,
we determine dependence of the noise power cumulants on the temperature,
applied bias voltage and the number of propagating modes in the leads. Intrinsic
connection between statistics of thermal to shot noise crossover and statistics
of Landauer conductance is revealed and briefly discussed.

PACS numbers: 73.23.−b, 05.45.Mt, 02.30.Ik

1. Introduction: thermal versus shot noise

The charge transfer through a phase-coherent cavity exhibiting chaotic classical dynamics is
a random process influenced by discreteness of the electron charge e and the quantum nature
of electrons (Blanter and Büttiker 2000, Imry 2002, Martin 2005). Fluctuations of charge
transmitted during a fixed time interval or, equivalently, fluctuations δI (t) of current around
its mean are quantified by the noise power

P = 2
∫ +∞

−∞
dt 〈δI (t + t0)δI (t0)〉t0 , (1.1)

where the brackets 〈· · ·〉t0 indicate the time averaging.
At temperatures θ = kBT which are much larger than a bias voltage υ = eV applied

to the cavity (θ � υ), the current fluctuations are dominated by the equilibrium thermal
noise, also known as Johnson–Nyquist noise. Caused by fluctuating occupation numbers in
a flow of carriers injected into cavity from electronic reservoirs, thermal noise extends over
all frequencies up to the quantum limit θ/h. In the absence of electron–electron interactions,
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its power at zero bias voltage (υ = 0) is related to the scattering matrix S of the system
composed of the cavity and the leads (Khlus 1987, Lesovik 1989, Büttiker 1990, 1992, Martin
and Landauer 1992):

Pth(θ) = 4θG0tr(C1SC2S†). (1.2)

Here, G0 = e2/h is the conductance quantum. The projection matrices C1,2 encode the
information about particular cavity-lead geometry and will be specified later on.

In the opposite limit of low temperatures (θ � υ), the current fluctuations are still
significant even though the flow of incident electrons is essentially noiseless. In this
temperature regime, nonequilibrium current fluctuations (known as a shot noise) exist because
of (i) the granularity of the electron charge e and (ii) the stochastic nature of electron scattering
inside the cavity which splits the electron wave into two or more partial waves leaving the
cavity through different exits. It is this ‘uncertainty of not knowing where the electron came
from and where it will go to’ (Oberholzer et al 2002) that makes the transmitted charge to
fluctuate. At zero temperature, the scattering matrix approach brings the shot noise power in
the form

Pshot(υ) = 2υG0[tr(C1SC2S†) − tr(C1SC2S†)2]. (1.3)

At finite temperatures, both sources of noise are operative, the total noise P(θ, υ) being
a complicated function of temperature and bias voltage3:

P(θ, υ) = 4θG0

(
tr(C1SC2S†)2 +

υ

2θ
coth

( υ

2θ

)
[tr(C1SC2S†) − tr(C1SC2S†)2]

)
. (1.4)

Equation (1.4) suggests that the crossover from thermal noise Pth(θ) = P(θ, 0) to shot noise
Pshot(υ) = P(0, υ) depends in a sensitive way on the scattering properties of the cavity and
the leads incorporated in the scattering matrix S. Since chaotic scattering of electrons inside
the cavity induces fluctuations of S-matrix (Blümel and Smilansky 1990), the noise power
P(θ, υ) fluctuates, too.

So far, the thermal to shot noise crossover has only been studied at the level of
average noise power. For the two-terminal scattering geometry comprising the cavity
attached to outside reservoirs (kept at temperature θ ) via two leads supporting NL and NR

propagating modes, respectively, the average noise power equals (Blanter and Sukhorukov
2000, Oberholzer et al 2001, Savin and Sommers 2006)

〈P(θ, υ)〉S = 〈Pth〉S
[

1 +
NLNR

(NL + NR)2 − 1
fβ

]
, (1.5)

where

〈Pth〉S = 4θG0
NLNR

NL + NR
(1.6)

is the average equilibrium thermal noise power, and the thermodynamic function

fβ = β coth β − 1 (1.7)

depends on the ratio β = υ/2θ between the bias voltage υ and the temperature θ . Equations
(1.5) and (1.6) hold for cavities with broken time reversal symmetry.4 Derived for the universal
transport regime (Beenakker 1997, Richter and Sieber 2002, Müller et al 2007) emerging in
the limit τD � τE (Agam et al 2000), where τD is the average electron dwell time and τE

is the Ehrenfest time (the time scale where quantum effects set in), the above prediction

3 Equation (1.4) disregards the low-frequency 1/f noise that can efficiently be filtered out in experiments.
4 The two can readily be extended to other symmetry classes, see Savin and Sommers (2006).
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has been confirmed in a remarkable series of experiments (Oberholzer et al 2001, 2002,
Cron et al 2001).

In this paper, we examine statistics of the thermal to shot noise crossover. The latter,
contained in the distribution function of the noise power P(θ, υ) or, equivalently, in its
cumulants 〈〈P�〉〉, can effectively be described within the framework of integrable theory of
quantum transport formulated by Osipov and Kanzieper (2008). Let us stress that recent
experimental studies (Flindt et al 2009) of quantum noise fluctuations in nanoscale conductors
(which concentrated on detection of higher cumulants of noise) suggest that testing our
predictions may be feasible within the current limits of nanotechnology.

2. Integrable theory of noise power fluctuations

In what follows, we consider chaotic cavities with broken time-reversal symmetry which are
probed, via ballistic point contacts, by two (left and right) leads; the leads supporting NL

and NR propagating modes, respectively, are further coupled to external reservoirs kept at the
temperature θ . This scattering geometry corresponds to the projection matrices C1,2 of the
form

C1 =
(

1NL 0

0 0NR

)
, C2 =

(
0NL 0

0 1NR

)
, (2.1)

see equations (1.2)–(1.4).

2.1. Joint cumulants of Landauer conductance and noise power

The starting point of our analysis is the joint cumulant generating function (JCGF)

Fn(z, w) = 〈exp(−zG/G0) exp(−wP/P0)〉S∈CUE(N) (2.2)

of the Landauer conductance G = G0tr(C1SC2S†) and the noise power P(θ, υ) measured in
the units of G0 = e2/h and P0 = 4θG0, respectively. The joint dimensionless cumulants

κ�,m = 〈〈(G/G0)
�(P/P0)

m〉〉 (2.3)

can be extracted from the expansion

logFn(z, w) =
∞∑

�,m=0

(−1)�+m z�wm

�!m!
κ�,m, (2.4)

where κ0,0 ≡ 0. In both equations (2.2) and (2.4), the subscript n stands for n = min(NL, NR),
and N = NL + NR is the total number of propagating modes (channels) in the leads. The
notation S ∈ CUE(N) indicates that averaging runs over scattering matrices S drawn from
the Dyson circular unitary ensemble (Blümel and Smilansky 1990, Mello and Baranger 1999,
Mehta 2004). The latter is microscopically justified (Lewenkopf and Weidenmüller 1991,
Brouwer 1995) in the universal transport regime we are confined to.

To perform the averaging in equation (2.2) in a most economic way, we employ a polar
decomposition (Hua 1963, Baranger and Mello 1994, Forrester 2006) of S-matrix. Bringing
into play a set of n transmission eigenvalues T = (T1, . . . , Tn) ∈ (0, 1)n distributed in
accordance with the joint probability density function

Pn(T ) = c−1
n 	2

n(T )

n∏
j=1

T ν
j , (2.5)
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this decomposition highlights Landauer’s idea of viewing conductance as transmission,

G(T ) = G0

n∑
j=1

Tj . (2.6)

Simultaneously, it reduces the expression for noise power (equation (1.4)) down to

P(T ) = P0

⎛
⎝ n∑

j=1

Tj + fβ

n∑
j=1

Tj (1 − Tj )

⎞
⎠ . (2.7)

The parameter ν in equation (2.5) is a measure of asymmetry between the leads, ν = |NL−NR|,
the notation 	n(T ) stands for the Vandermonde determinant 	n(T ) = ∏

j<k(Tk −Tj ), whilst
cn is a normalization constant. As the result, we are left with the JCGF in the form

Fn(z, w) = c−1
n

∫
(0,1)n

n∏
j=1

dTjT
ν
j �z,w(Tj )	

2
n(T ), (2.8)

where

�z,w(T ) = exp[−(z + w)T − wfβT (1 − T )]. (2.9)

Although the above matrix integral representation of the JCGF Fn(z, w) is by far more
complicated than the one appearing in the integrable theory of conductance fluctuations
(Osipov and Kanzieper 2008),

Fn(z, 0) = 〈exp(−zG/G0)〉S∈CUE(N) = c−1
n

∫
(0,1)n

n∏
j=1

dTjT
ν
j e−zTj 	2

n(T ), (2.10)

it can still be treated nonperturbatively, much in line with the formalism used in the exact
approach to zero-dimensional replica sigma models (Kanzieper 2002, 2005, 2009, Osipov and
Kanzieper 2007).

2.2. The τ function theory of the joint cumulant generating function

The ‘deform-and-study’ approach (Morozov 1994, Adler et al 1995, Adler and van Moerbeke
2001) borrowed from the theory of integrable systems is central to the nonperturbative
calculation of Fn(z, w). In the present context, the main idea of the method consists of
‘embedding’ Fn(z, w) into a more general theory of the τ function

τn(t; z,w) = 1

n!

∫
(0,1)n

n∏
j=1

dTjT
ν
j �z,w(Tj )e

V (t;Tj )	2
n(T ) (2.11)

which possesses the infinite-dimensional parameter space t = (t1, t2, . . .) arising as the result
of the t deformation

V (t; T ) =
∞∑

k=1

tkT
k. (2.12)

Studying an evolution of the τ function in the extended (n, t, z, w) space allows us to identify
various nonlinear differential hierarchical relations. A projection of these relations onto the
hyperplane t = 0,

Fn(z, w) = n!

cn

τn(t; z,w)

∣∣∣
t=0

, (2.13)

generates, among others, a closed nonlinear differential equation for the JCGF Fn(z, w). It is
this equation (2.24) that will further supply the cumulants of noise power.

The two key ingredients of the exact theory of τ functions are (i) the bilinear identity
(Date et al 1983) and (ii) the (linear) Virasoro constraints (Mironov and Morozov 1990).
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2.2.1. Bilinear identity and Kadomtsev–Petviashvili equation. The bilinear identity encodes
an infinite set of hierarchically structured nonlinear differential equations in the variables
t = (t1, t2, . . .). For the model introduced in equation (2.11), the bilinear identity reads (Adler
et al 1995, Tu et al 1996):∮

C∞
dz eav(t−t′;z)τn(t − [z−1])

τm+1(t
′ + [z−1])

zm+1−n

=
∮
C∞

dz e(a−1)v(t−t′;z)τm(t′ − [z−1])
τn+1(t + [z−1])

zn+1−m
. (2.14)

Here, a ∈ R is a free parameter; the integration contour C∞ encompasses the point z = ∞;
the notation t ± [z−1] stands for the infinite set of parameters {tj ± z−j /j}; for brevity, both z

and w were dropped from the arguments of τ functions.
Being expanded in terms of t′ − t and a, equation (2.14) generates a variety of integrable

hierarchies (Osipov and Kanzieper 2009). One of them is the Kadomtsev–Petviashvili (KP)
hierarchy. Its first nontrivial member(

∂4

∂t4
1

+ 3
∂2

∂t2
2

− 4
∂2

∂t1∂t3

)
log τn(t; z,w) + 6

(
∂2

∂t2
1

log τn(t; z,w)

)2

= 0 (2.15)

is of primary importance since its projection onto t = 0 (equation (2.13)) gives rise to a
nonlinear differential equation for the JCGF Fn(z, w). The resulting equation will further be
used to determine the noise power cumulants we are aimed at.

2.2.2. Virasoro constraints. Since we are interested in deriving a differential equation for
Fn(z, w) in terms of the derivatives over variables z and w, we have to seek an additional block
of the theory that would make a link between tj -derivatives in equation (2.15) taken at t = 0
and the derivatives over w and z. This missing block is the Virasoro constraints which reflect
the invariance of the τ function (equation (2.11)) under a change of the integration variables.

In the present context, it is useful to demand the invariance under the set of transformations

Tj → T̃j + εT̃
q+1
j (T̃j − 1), q � 0. (2.16)

Employing by now a standard procedure (Mironov and Morozov 1990, Adler and van
Moerbeke 1995), one readily checks that transformation (2.16) induces Virasoro constraints
in the form [

L̂q+1(t) − L̂q(t)
]
τn(t; z,w) = 0, q � 0, (2.17)

where a set of differential operators

L̂q(t) = L̂q(t) + 2fβw
∂

∂tq+2
− [z + (1 + fβ)w]

∂

∂tq+1
+ ν

∂

∂tq
(2.18)

involves the Virasoro operators

L̂q(t) =
∞∑

j=1

j tj
∂

∂tq+j

+
q∑

j=0

∂2

∂tj ∂tq−j

, (2.19)

satisfying the Virasoro algebra

[L̂p, L̂q] = (p − q)L̂p+q, p, q � −1. (2.20)

In equations (2.18) and (2.19), the convention ∂/∂t0 ≡ n is assumed.
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2.2.3. Nonlinear differential equation for Fn(z, w). To derive a differential equation for the
JCGF Fn(z, w), one has to project the first KP equation (2.15) onto the hyperplane t = 0.
Spotting the identities (fβ > 0)

∂

∂t1
τn(t; z,w) = − ∂

∂z
τn(t; z,w), (2.21)

fβ

∂

∂t2
τn(t; z,w) = ∂

∂w
τn(t; z,w) − (1 + fβ)

∂

∂z
τn(t; z,w), (2.22)

we combine equation (2.15) with the Virasoro constraints equation (2.17) taken at q = 0,[ ∞∑
j=1

j tj

(
∂

∂tj+1
− ∂

∂tj

)
+ 2fβw

(
∂

∂t3
− ∂

∂t2

)
− [z + (1 + fβ)w]

(
∂

∂t2
− ∂

∂t1

)

+ (NL + NR)
∂

∂t1
− NLNR

]
τn(t; z,w) = 0, (2.23)

to derive[
wf 2

β

∂4

∂z4
+

[
2(NL + NR)fβ − 2z + w

(
1 − f 2

β

)] ∂2

∂z2
+ 2(z − 2w)

∂2

∂z∂w
+ 3w

∂2

∂w2

+ 2

(
∂

∂w
− ∂

∂z

) ]
logFn(z, w) + 6wf 2

β

(
∂2

∂z2
logFn(z, w)

)2

= 0. (2.24)

Owing to equation (2.4), this nonlinear equation considered together with the equation for
Fn(z, 0) contains all the information about joint cumulants of the Landauer conductance and
the noise power. The latter equation, written in terms of

σn(z) = NLNR + z
∂

∂z
logFn(z, 0), (2.25)

reads (Osipov and Kanzieper 2008)

z2 ∂3

∂z3
σn(z) + z

∂2

∂z2
σn(z) + 6z

(
∂

∂z
σn(z)

)2

− 4σn

∂

∂z
σn(z)

−[
(z − (NL + NR))2 − 4NLNR

] ∂

∂z
σn(z) − (NL + NR − z)σn(z) = 0. (2.26)

This can be recognized as the Chazy form (Chazy 1911, Cosgrove and Scoufis 1993) of the
fifth Painlevé transcendent

(
z

∂2

∂z2
σn(z)

)2

−
[
σn(z) + 2

(
∂

∂z
σn(z)

)2

+ (NL + NR − z)
∂

∂z
σn(z)

]2

+ 4

(
∂

∂z
σn(z)

)2 (
NL +

∂

∂z
σn(z)

)(
NR +

∂

∂z
σn(z)

)
= 0 (2.27)

written in the Jimbo–Miwa–Okamoto form (Jimbo et al 1980, Okamoto 1987). For
completeness, we have included a detailed derivation of equation (2.26) in appendix A.

6
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2.3. Recurrence solution for joint cumulants

Combined with the cumulant expansion equation (2.4), the differential equation (2.24)
furnishes the nonlinear recurrence for the joint dimensionless cumulants κ�,m of conductance
and noise power (�,m � 0):

m
[
f 2

β κ�+4,m−1 + (1 − f 2
β )κ�+2,m−1

] − 2(NL + NR)fβκ�+2,m

− 2 (� + 2m + 1) κ�+1,m + (2� + 3m + 2)κ�,m+1

+ 6mf 2
β

m−1∑
i=0

(
m − 1

i

) �∑
j=0

(
�

j

)
κj+2,iκ�−j+2,m−i−1 = 0. (2.28)

To resolve it, one must know the boundary conditions whose rôle is played by cumulants κ�,0 =
〈〈(G/G0)

�〉〉 of the dimensionless Landauer conductance. These have been nonperturbatively
calculated in our previous publication (Osipov and Kanzieper 2008). Indeed, given the mean
conductance

κ1,0 = NLNR

NL + NR
(2.29)

and its variance

κ2,0 = κ2
1,0

(NL + NR)2 − 1
, (2.30)

the higher order cumulants κ�,0’s are determined by the one-dimensional recurrence5

[(NL + NR)2 − �2](� + 1)κ�+1,0 + (NL + NR)(2� − 1)�κ�,0 + �(� − 1)(� − 2)κ�−1,0

− 2
�−1∑
j=0

(3j + 1)(j − �)2

(
�

j

)
κj+1,0κ�−j,0 = 0. (2.31)

Equations (2.28) and (2.31) represent the main result of our study6. They provide a
nonperturbative description of the noise power fluctuations in the crossover region between
the thermal and the shot noise (Savin et al 2008) regimes (as discussed in the Introduction) by
relating the temperature (θ ) and bias–voltage (υ) dependent cumulants of the noise power to
those of the Landauer conductance.

5 Equations (2.29), (2.30) and (2.31) follow from the cumulant expansion

logFn(z, 0) =
∞∑

�=1

(−1)�
z�

�!
κ�,0,

see equations (2.4) and (2.10), substituted into equation (2.27). Successive iterations of equation (2.31) yield the
cumulants κ�,0 of Landauer conductance in the form

κ�,0 = (� − 1)!∏�−1
j=1(N

2 − j2)
p�(κ1,0),

where the first few polynomials p�(κ) are

p1(κ) = κ,

p2(κ) = κ2,

p3(κ) = 4κ3 − Nκ2,

p4(κ) = 12

(
2 − 1

N2 − 1

)
κ4 − 10Nκ3 + (N2 + 1)κ2.

Here, N = NL + NR.
6 Note that equation (15) in the paper by Osipov and Kanzieper (2008) contains typos. The correct formula is given
by equation (2.31).

7
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Undoubtedly, the very existence of the above nontrivial relation (which emphasizes a
fundamental rôle played by Landauer conductance in transport problems) must be well rooted
in the mathematical formalism and also have a good physics reason. As far as the former point
is concerned, we wish to stress that a naı̈ve attempt to build a theory for the generating function
Fn(0, w) of solely noise power cumulants faces an unsurmountable obstacle: the KP equation
(equation (2.15)) and appropriate Virasoro constraints (equation (2.17) at z = 0) cannot be
resolved jointly in the hyperplane t = 0. This justifies the starting point (equation (2.2)) of
our analysis. The physics arguments behind the peculiar structure of our solution are yet to be
found.

2.4. Noise power cumulants in the crossover regime

Some computational effort is needed to read off explicit formulae for the noise power cumulants
from equations (2.28) and (2.31). Below we provide expressions for two families of joint
cumulants expressed in terms of dimensionless cumulants κ�,0 = 〈〈(G/G0)

�〉〉 of the Landauer
conductance.

• Mean noise power

〈〈P〉〉 = 4θG0[Nfβκ2,0 + κ1,0] (2.32)

is generated by the lowest order member (�,m) = (0, 0) of the recurrence equation (2.28).
Being in concert with the known expression (equations (1.5) and (1.6)), this result is a
particular case of a more general formula

κ�,1 = κ�+1,0 + N
fβ

� + 1
κ�+2,0. (2.33)

• Noise power variance,

〈〈P2〉〉 = (4θG0)
2

[ (
2

3
N2 − 1

)
f 2

β

5
κ4,0 + Nfβκ3,0 +

(
1 +

f 2
β

5

)
κ2,0 − 6

5
f 2

β κ2
2,0

]
,

(2.34)

is supplied by the (�,m) = (0, 1) member of the recurrence. Its generalization reads

κ�,2 =
(

2N2

� + 3
− 1

)
f 2

β

2� + 5
κ�+4,0 + 2N

fβ

� + 2
κ�+3,0 +

(
1 +

f 2
β

2� + 5

)
κ�+2,0

− 6
f 2

β

2� + 5

�∑
j=0

(
�

j

)
κj+2,0κ�+2−j,0. (2.35)

Here and above, N = NL + NR.

The noise power cumulants 〈〈P�〉〉 of higher order (� � 3) can be calculated in the same manner
albeit explicit expressions become increasingly cumbersome. Varying therein the parameters
(θ, υ) from (θ, 0) to (0, υ), one observes a smooth crossover between the thermal and the shot
noise regime.

2.5. Large-n analysis of joint cumulants: symmetric leads

The nonpeturbative solution (equations (2.28) and (2.31)) has a drawback: it does not provide
much desired explicit dependence of conductance and/or noise power cumulants κ�,m on
parameters of the scattering system. To probe such a dependence, we turn to the large-n limit

8



J. Phys. A: Math. Theor. 42 (2009) 475101 V Al Osipov and E Kanzieper

of the recurrence equation (2.28). In what follows, the asymmetry parameter ν will be set to
zero.

Under the latter assumption (ν = 0), the joint cumulants κ�,m are solutions to the
recurrence equation (�,m � 0)

m
[
f 2

β κ�+4,m−1 + (1 − f 2
β )κ�+2,m−1

] − 4nfβκ�+2,m

− 2 (� + 2m + 1) κ�+1,m + (2� + 3m + 2)κ�,m+1

+ 6mf 2
β

m−1∑
i=0

(
m − 1

i

) �∑
j=0

(
�

j

)
κj+2,iκ�−j+2,m−i−1 = 0 (2.36)

which must be supplemented by yet another recurrence (� � 2)

(4n2 − �2)(� + 1)κ�+1,0 + 2n(2� − 1)�κ�,0 + �(� − 1)(� − 2)κ�−1,0

− 2
�−1∑
j=0

(3j + 1)(j − �)2

(
�

j

)
κj+1,0κ�−j,0 = 0 (2.37)

that brings, in turn, a set of initial conditions κ�,0 to equation (2.36).

2.5.1. Cumulants of Landauer conductance. It is instructive to start with the asymptotic
analysis of equation (2.37). In the case of symmetric leads, the conductance cumulants of odd
order vanish7, κ2�+1,0 ≡ 0 for all � � 1 albeit κ1,0 = n/2. As the result, one is left with the
recurrence equation for the cumulants κ2�,0 of even order (� � 1)

[4n2 − (2� + 1)2](� + 1)κ2�+2,0 + �(4�2 − 1)κ2�,0

−8
�−1∑
j=0

(3j + 2)(j − �)2

(
2� + 1

2j + 1

)
κ2j+2,0κ2�−2j,0 = 0 (2.38)

subject to the initial condition (equation (2.30))

κ2,0 = n2

4(4n2 − 1)
= 1

16

∞∑
σ=0

1

(4n2)σ
. (2.39)

Since, in the limit of a large number of propagating modes (n � 1), the conductance
distribution is expected to roughly follow the Gaussian law (Politzer 1989) with the mean
κ

(G)
1,0 = n/2 and the variance κ

(G)
2,0 = 1/16 (see equations (2.29) and (2.30)), it is natural to

seek a large-n solution to equation (2.38) in the form (j � 1)

κ2�,0 = 1

16
δ�,1 + δκ2�,0, (2.40)

where δκ2�,0 (with � � 2) account for deviations from the Gaussian distribution. Putting
forward the large-n ansatz

δκ2�,0 = 1

n2�

∞∑
σ=0

a2�(2σ)

n2σ
, � � 1, (2.41)

where (see equation (2.39))

a2(2σ) = 1

22σ+4
, (2.42)

7 At the formal level, this is direct consequence of the identity Fn(z, 0) = e−nzFn(−z, 0) holding as soon as ν = 0,
see equation (2.10).
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we further substitute it into equation (2.38) to derive
a2�+2(0)

a2�(0)
= 1

24

(2� + 1)!

(2� − 1)!
, � � 2, (2.43)

and
a4(0)

a2(2)
= 3!

24
. (2.44)

Hence,

a2�(0) = 1

4

(2� − 1)!

42�
. (2.45)

Taken together with equation (2.42), this yields the leading term in the 1/n expansion (equation
(2.41)) for conductance cumulants:

δκ2� � 1

4

(2� − 1)!

(4n)2�
. (2.46)

The higher order corrections to equation (2.46) can be obtained in a regular way.

2.5.2. Dependence of the noise power cumulants on temperature and bias voltage. Similarly
to the previous subsection, we start an asymptotic analysis of the recurrence equation (2.36)
with singling out the large-n Gaussian part:

κ�,m = n

2

[
δ�,1δm,0 +

(
1 +

fβ

4

)
δ�,0δm,1

]

+
1

16

[
δ�,1δm,1 + δ�,2δm,0 +

(
1 +

f 2
β

8

)
δ�,0δm,2

]
+ δκ�,m. (2.47)

The Gaussian part was read off from equations (2.33) and (2.35); the term δκ�,m accommodates
non-Gaussian corrections to the joint cumulants of Landauer conductance and the noise power.
Their large-n behaviour can be studied within the 1/n ansatz

δκ�,m = 1

n�+m

∞∑
σ=0

a�,m(σ )

nσ
, (2.48)

where a1,0(σ ) = 0. Substitution of equations (2.47) and (2.48) into the two-dimensional
recurrence equation (2.36) brings the recurrence equation (� + m > 0)

m

(
1 − f 2

β

4

)
a�+2,m−1(0) − 4fβa�+2,m(0)

−2(� + 1 + 2m)a�+1,m(0) + (2� + 2 + 3m)a�,m+1(0) = 0 (2.49)

for the expansion coefficients a�,m(0) appearing in equation (2.48). The (unique) solution of
equation (2.49), subject to the boundary condition

a�,0(0) = (� − 1)!

22�+3
[1 + (−1)�] (2.50)

derived in section 2.5.1 (see equation (2.45)), reads (� + m > 0):

a�,m(0) = (� + m − 1)!

22(�+m)+3

[(
fβ

2
+ 1

)m

+ (−1)�
(

fβ

2
− 1

)m]
. (2.51)

Combined with equation (2.48), it yields the leading term in the 1/n expansion for joint
cumulants of Landauer conductance and the noise power:

δκ�,m � 1

8

(� + m − 1)!

(4n)�+m

[(
fβ

2
+ 1

)m

+ (−1)�
(

fβ

2
− 1

)m]
. (2.52)
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Equations (2.47) and (2.52) are the central result of this section.
In particular, it brings the following large-n expression for the cumulants of noise power

in the case of symmetric leads:

〈〈P�〉〉 � (G0θ)�

[
2n

(
1 +

fβ

4

)
δ�,1 +

(
1 +

f 2
β

8

)
δ�,2

+
(� − 1)!

8n�

[(
fβ

2
− 1

)�

+

(
fβ

2
+ 1

)�
] ]

. (2.53)

Explicit dependence of the noise power cumulants on both the temperature θ and the
bias voltage υ enters through a single function fβ (see equation (1.7)) that depends on
the ratio β = υ/2θ . Based on equation (2.53), it can further be shown that small but
nonvanishing cumulants of the third and higher order are responsible for long exponential
tails in the otherwise Gaussian distribution of the noise power (compare with Vivo et al
2008).

3. Conclusions

In summary, we have presented an advanced formulation of the recently proposed integrable
theory of quantum transport (Osipov and Kanzieper 2008) to study statistics of noise power
fluctuations in a chaotic cavity with broken time-reversal symmetry in the crossover regime
(θ, 0) → (0, υ) between thermal and shot noise. By relating the cumulants of noise power to
those of the Landauer conductance, we determined dependence of the noise power cumulants
(as well as of joint cumulants of Landauer conductance and the noise power) on the bias
voltage υ, temperature θ and the number of channels NL,R in the leads attached to a cavity
through ballistic point contacts.

We are confident that ideas of integrability combined with the scattering matrix approach
are able to provide a nonperturbative description of many more transport phenomena in chaotic
cavities. Quantum transport in cavities with losses (Doron et al 1991, Beenakker and Brouwer
2001, Simon and Moustakas 2006) and non-ideal leads (Brouwer 1995) are just two examples
of chaotic scattering systems whose detailed study is much called for.
Note added. Recently, we learnt about the paper by Khoruzhenko et al (2009) where an
alternative approach was developed to describe statistics of conductance and shot-noise power
in chaotic cavities with and without time-reversal symmetry. Possibly triggered by the earlier
paper by Novaes (2008), these authors combine a theory of the Selberg integral with the
theory of symmetric functions to evaluate the (joint) moments of Landauer conductance and
the shot-noise power in terms of series over all partitions of the moment’s order. In particular,
Khoruzhenko et al (2009) confirm our large-n formulae equations (2.46) and (2.53) at zero
temperature.
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Appendix A. Cumulant generating function for the Landauer conductance and the fifth
Painlevé transcendent

Relation to a gap formation probability. The ‘simplest’ (albeit not operative) way to observe
that the conductance cumulant generating function Fn(z, 0) (equation (2.10)) can be expressed
in terms of Painlevé V is to spot that Fn(z, 0) is essentially the gap formation probability
within the interval (z, +∞) in the spectrum of an n × n Laguerre unitary ensemble. Indeed,
the transformation of integration variables λj = zTj in equation (2.10) yields

Fn(z, 0) = c−1
n z−n(n+ν)

∫
(0,z)n

n∏
j=1

dλjλ
ν
j e−λj 	2

n(λ). (A.1)

A nonperturbative evaluation of the above n-fold integral is readily available (Tracy and Widom
1994, Forrester and Witte 2002) eventually resulting in the following Painlevé V representation
(Osipov and Kanzieper 2008):

Fn(z, 0) = exp

(∫ z

0
dt

σn(t) − n(n + ν)

t

)
. (A.2)

Here, σn(t) satisfies the Jimbo–Miwa–Okamoto form of the Painlevé V equation (Jimbo et al
1980, Okamoto 1987):

(tσ ′′
n )2 + [σn − tσ ′

n + 2(σ ′
n)

2 + (2n + ν)σ ′
n]2 + 4(σ ′

n)
2(σ ′

n + n)(σ ′
n + n + ν) = 0 (A.3)

subject to the boundary condition σV(t → 0) � n(n+ν). Keeping in mind the parameterization
n = min(NL, NL) and ν = |NL − NR|, one concludes that equation (A.3) is equivalent to
equation (2.27) announced in section 2.2.3.

Direct evaluation of Fn(z, 0). To directly evaluate Fn(z, 0) defined by equation (2.10), we
introduce the associated τ function

τn(t; z) = 1

n!

∫
(0,1)n

n∏
j=1

dTjT
ν
j e−zTj +V (t;Tj )	2

n(T ) (A.4)

such that

Fn(z, 0) = n!

cn

τn(t; z)

∣∣∣
t=0

, (A.5)

and make use of the KP equation (2.15),(
∂4

∂t4
1

+ 3
∂2

∂t2
2

− 4
∂2

∂t1∂t3

)
log τn(t; z) + 6

(
∂2

∂t2
1

log τn(t; z)

)2

= 0, (A.6)

supplemented by the Virasoro constraints8

[L̂q+1(t) − L̂q(t)]τn(t; z) = 0, q � 0, (A.7)

where a set of differential operators

L̂q(t) = L̂q(t) − z
∂

∂tq+1
+ ν

∂

∂tq
(A.8)

involves the Virasoro operators (equation (2.19)) (the convention ∂/∂t0 ≡ n is assumed).
In order to project the KP equation (A.6) onto t = 0, we need only two Virasoro constraints

labelled by q = 0,⎡
⎣ ∞∑

j=1

j tj

(
∂

∂tj+1
− ∂

∂tj

)
− z

∂

∂t2
+ (2n + ν + z)

∂

∂t1

⎤
⎦ log τn(t; z) = n(n + ν), (A.9)

8 Equations (A.7) and (A.8) readily follow from equations (2.17) and (2.18) upon setting fβ = 0 and w = 0.
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and q = 1[ ∞∑
j=1

j tj

(
∂

∂tj+2
− ∂

∂tj+1

)
− z

∂

∂t3
+ (2n + ν + z)

∂

∂t2

− (2n + ν)
∂

∂t1
+

∂2

∂t2
1

]
log τn(t; z) +

(
∂

∂t1
log τn(t, z)

)2

= 0. (A.10)

Here
∂

∂t1
τn(t; z) = − ∂

∂z
τn(t; z). (A.11)

Lengthy but straightforward manipulations with equations (A.9) and (A.10) as well as with
their derivatives over t1 and t2 projected onto t = 0 result in equations (2.25) and (2.26).
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